953 research outputs found

    Analysis of the project fire re-entry package flow field final technical report

    Get PDF
    Theoretical prediction of state of gas in flow field surrounding Apollo type vehicle in reentry at hypersonic speed

    Twisted Rindler space-times

    Full text link
    The (linearized) noncommutative Rindler space-times associated with canonical, Lie-algebraic and quadratic twist-deformed Minkowski spaces are provided. The corresponding deformed Hawking spectra detected by Rindler observers are derived as well.Comment: 13 pages, no figures, keywords: quantum space-times, Hawking radiatio

    Singular Modes of the Electromagnetic Field

    Get PDF
    We show that the mode corresponding to the point of essential spectrum of the electromagnetic scattering operator is a vector-valued distribution representing the square root of the three-dimensional Dirac's delta function. An explicit expression for this singular mode in terms of the Weyl sequence is provided and analyzed. An essential resonance thus leads to a perfect localization (confinement) of the electromagnetic field, which in practice, however, may result in complete absorption.Comment: 14 pages, no figure

    A conceptual design study of the reusable reentry satellite

    Get PDF
    Experimentation leading to an understanding of life processes under reduced and extremely low gravitational forces will profoundly contribute to the success of future space missions involving humans. In addition to research on gravitational biology, research on the effects of cosmic radiation and the interruption and change of circadian rhythms on life systems is also of prime importance. Research in space, however, is currently viewed by biological scientists as an arena that is essential, yet largely inaccessible to them for their experimentation. To fulfill this need, a project and spacecraft system described as the Reusuable Reentry Satellite or Lifesat has been proposed by NASA

    Analytical model for laser-assisted recombination of hydrogenic atoms

    Full text link
    We introduce a new method that allows one to obtain an analytical cross section for the laser-assisted electron-ion collision in a closed form. As an example we perform a calculation for the hydrogen laser-assisted recombination. The SS-matrix element for the process is constructed from an exact electron Coulomb-Volkov wave function and an approximate laser modified hydrogen state. An explicit expression for the field-enhancement coefficient of the process is expressed in terms of the dimensionless parameter κ=∣eϵ0/qω0∣2\kappa= |{e\epsilon_{0}}/{q\omega_{0}}|^{2}, where ee and qq are the electron charge and momentum respectively, and ϵ0\epsilon_{0} and ω0\omega_{0} are the amplitude and frequency of the laser field respectively. The simplified version of the cross section of the process is derived and analyzed within a soft photon approximation.Comment: 10 page

    Image method in the calculation of the van der Waals force between an atom and a conducting surface

    Full text link
    Initially, we make a detailed historical survey of van der Waals forces, collecting the main references on the subject. Then, we review a method recently proposed by Eberlein and Zietal to compute the dispersion van der Waals interaction between a neutral but polarizable atom and a perfectly conducting surface of arbitrary shape. This method has the advantage of relating the quantum problem to a corresponding classical one in electrostatics so that all one needs is to compute an appropriate Green function. We show how the image method of electrostatics can be conveniently used together with the Eberlein and Zietal mehtod (when the problem admits an image solution). We then illustrate this method in a couple of simple but important cases, including the atom-sphere system. Particularly, in our last example, we present an original result, namely, the van der Waals force between an atom and a boss hat made of a grounded conducting material.Comment: This is a pedagogical and introductory paper on van der Waals forces between an atom and a conducting surfac

    Establishing the relationship between manufacturing and component performance in stretch formed thermoplastic composites

    Get PDF
    Flexible manufacturing methods are needed to reduce the cost of using advanced composites in structural applications. One method that allows for this is the stretch forming of long discontinuous fiber materials with thermoplastic matrices. In order to exploit this flexibility in an economical way, a thorough understanding of the relationship between manufacturing and component performance must be developed. This paper reviews some of the recent work geared toward establishing this understanding. Micromechanics models have been developed to predict the formability of the material during processing. The latest improvement of these models includes the viscoelastic nature of the matrix and comparison with experimental data. A finite element scheme is described which can be used to model the forming process. This model uses equivalent anisotropic viscosities from the micromechanics models and predicts the microstructure in the formed part. In addition, structural models have been built to account for the material property gradients that can result from the manufacturing procedures. Recent developments in this area include the analysis of stress concentrations and a failure model each accounting for the heterogeneous material fields
    • …
    corecore